With the commercialization of virtual/augmented reality (VR/AR) devices, there is an increasing interest in combining immersive and non-immersive devices (e.g., desktop computers) for asymmetric collaborations. While such asymmetric settings have been examined in social platforms, significant questions around layout dimensionality in data-driven decision-making remain underexplored. A crucial inquiry arises: although presenting a consistent 3D virtual world on both immersive and non-immersive platforms has been a common practice in social applications, does the same guideline apply to lay out data? Or should data placement be optimized locally according to each device's display capacity? This study aims to provide empirical insights into the user experience of asymmetric collaboration in data-driven decision-making. We tested practical dimensionality combinations between PC and VR, resulting in three conditions: PC2D+VR2D, PC2D+VR3D, and PC3D+VR3D. The results revealed a preference for PC2D+VR3D, and PC2D+VR2D led to the quickest task completion. Our investigation facilitates an in-depth discussion of the trade-offs associated with different layout dimensionalities in asymmetric collaborations.
Daniel Enriquez Jacobs Technion-Cornell Institute at Cornell Tech,, Wai Tong Texas A&M University, Chris North Virginia Tech, Huamin Qu The Hong Kong University of Science and Technology, Yalong Yang Georgia Institute of Technology